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ABSTRACT

A two-source shear pattern recording is proposed as a methed
for single-shot measurement of the pulse shape from nearly
monochromatic sources whose pulse lengths are shorter than their
coherence times. The basis of this method relies on the
assertion that if two iuentical electromagnetic pulses are
recombined with a time delay greater than the sum of their pulse
widths, the recordable spatial pattern has no fringes in it. At
an arbitrary delay, translated into an actual spatial recording
position, the recorded modulated intensity will sample the
corresponding laser intensity at that delay time, but with a
modulation due to the coherence function of the electromagnetic
pulse. Two arrangements are proposed for recording the pattern.
The principles, the design parameters, and the methodologies of
these arrangements will be presented. Resolutions of the
configurations and their limitations will be given as well.

A. INTRODUCTION

Short pulses of electromagnetic radiation can be characterized
by their pulse widcth and their coherence time. Alternative
quantities in the complenentarv domain are spectral bandwidth and
spectral structure. The concept of coherence for a short pulse
is physically hard to define, since the pulse duration is not
iong enough to describe the temporal coherence property of the
pulse.l For a broadband pulse, white pulse, of duration 4t = 3]
ps, the spectral freguency bandwidth 4v is typically 1014 Hz,

The Sampling theorem< allows for Ny temporal samples in the
pulse, Ny = 4v 4t ~ 102. Thus statistical techniques must be
applied to average in time. This i3 a consequence of the
non-coherence of the light, and of its non fourier-transform
limited nature. For laser light on the otherhand, the spectral
bandwidth is of the order 4v = 1012 Hz for a 4t = 1 ps pulse.
Thus the number of temporal samples N¢ = 1. Thercfore, we have
temporal coherence, or in alternative language we have a
nearly-transform-limited electromagnetic pulse. The measurement
of the short pulse properties fall into two broadband categories.
For broadband light, etreakx cameras and photodetectors have been



applied to measure the light duration to the order of a
picosecond. For monochromatic radiation in the visible and the
infrared, autocorrelation techniques utilizing mixing in
non-linear crystals3 and dyes,4 interferometric techniques,>
scattering from self-induced transient diffraction grating,® two
photon fluo:escence,’ two-photon excitation of recording film,$8
and multiphcton ionization.? For short wavelengths (A < 250 nm)
few of these techniques wor).. G3treak cameras and detectors are
limited to a picosecond pulse length by the spread in energy of
the photoelectrons due to the large photoabsorption depths in the
photocathodes. <Correlation techniques using non-linear
conversion, though applied successfully in at least one case,l0
are generally limited since the energy from two photon absorption
ionizes most non-linear materials. Only multiphoton-ionization
is of general use, however the technique does not work for single
shot measurement of the pulse shape, and its signhals are very
dependent (N!) on the number of modes N in and the irradiance of
the laser beam. The number of modes and the intensity may vary
from shot to shot.

In this report a new twist on the interference method is
presented and discussed. The method can be applied to any
coherent oscillatory disturbance from the infrared to the x-rays
region of the spectrum. Provided enough energy exists in a pulse
for recording, the method is capable of single shot pulse shape
measurement.

2. PRINCIPLE

The basic principle used here is splitting the incident pulse
into two beams that travel different, but very close, paths, then
allowing those two beams to interfere. The electric field
strength, E; within each pulse i can be expressed:1l

E, = -1 [taT Jo + cc (1)

where k; is the wave vector, ¥ is the position vector, and 7, is a
delay time. The time dependent amplitude Vj (i) will be expressed
as a modulated signal of carrier mean frequency w,:

pl[Ol(f)-w.t]

L) = AL ()

where Aj(t) and ¢,(t) vary slowly in comparison with wt. When
these pulses interfere, the recorded irradiance will be:
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which for a monochromatic beam reduces to:
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where the temporal coherence function I is defined as:11

r.(r) = j:-l',(t*T)l',(t)'dl (6)

One thus sees a modulated signal at a carrier frequency (i,-%;}'¥
with a much slower variation due to the coherence function rI,;.

Two models for the coherence function can be advanced. The

first gives a linear chirp in the phase of the disturbance, i.e.,
an exponential pulse:

P,y = o.\'p':tw,,r-al) t20

0 <0 (7a)

The second gives a frequency chirped gaussian pulse:

p(t) = exp{-at’+i{w,t-pt?)) (70)

These two models lead to two physical spectral distributiors
Lorentzian and Gaussian respectively:
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the models relate to the coherence functions:
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where the coherence time t. is related to 7 as
2in. T (1la)
t, =
2, In2 T (11b)

For these two models, rigorous relationships can be found
between the coherence time t., and the pulse FWHM width tp.6

In? lc .
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It is important to note that in the exponential case (Case A)
the coherence time of the pulse is longer than the pulse time.
Equally important for the Gaussian pulse, the coherence time is
larger than the pulse time, provided the frequer<y chirp is
small. For a transform-limited Gaussian pulse, 8 = 0. Thus the
present method for measuring pulse length rather than coherence
length is justified.

TWO IT SIGN

The two slit design is shown schematically in Figure 1.
Essentially one is using the two slits to sample the incident
pulse. In its simplest form, two spatially different parts of
the pulse are sampled, in which case one is also sensitive to
spatial coherence. By using diffraction from one slit to
illuminate both slits, one samples the same region of the pulse
area, limited to the signal to noise and the single slit area.l2
Using the standard formulation for diffraction from one slit, the
electric field at the screen, due to a small width dy within the
slit, will be:

DETECTION PLANE

Figure 1. Geometry used for two slit interferometer.

dE(R.Y = ¢, lwt ~ kR + ¢,] cos(wt - kR + ¢,) -dky (13)

Where ¢ is an arbitrary phase due to misalignment, etc., and «
t-kR is the nptical path difference. Integrating over the slit
width B,



E(R.,t) = B 7{ Sigﬂ cos{wt - kR + ¢, (14)
where 5 _ kB 521” ¢ (15)

Thus the recorded exposure is

. 2 ew
I = <IE(R.D)*>, = %F}; 5'—;—[5} | etar (16)

For a normalized gaussian pulse shape in intensity with full
width at half maximum FWHM = 1.66 o1, we write:

1 t\?
I(t) = —== ex —(-——) (17
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a normalized function:
fef(:)dt - /l(r)dz = | (18)

The corresponding electric field pulse shape is wider:

l 14 ('.? h
(l(f) = e (‘X})k-"- ) (]())
\/ \/‘ Ho, 20/ !

For two slits of width B separated by gav A, the electric field
is the sun of the electric fleld from the two slits. Thus the
irradiance is given by:

] w

! = <|[:‘|2> = (i,’~'|||",> + <|[:‘,|7> + 2([7lff'2*> = [, +1,+], (20)

where ‘he first two terms are the regular irradiances due to
diffraction from each slit while the last cross term can be
treated simply:
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The total irradiance will be cast in a more familiar form when
the replacement 2a = k4R + 4¢ is substituted. Thus,

Qa

N 2
I = 1,+12+2\/1,l2 cos(2a) exp[—(——A) } (22)
{
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When the pulse length and coherence length are very long, the
exponential factor reduces to unity, and we have the familiar two
slit diffraction pattern for a monochromatic wave. The pulse
length gives an amplitude modulation to the carrier wave
generated by the interference term. The modulation amplitude

exp - (arwo,’ decays symmetrically from the center of the pattern.
The arbitrary phases ¢,. ¢, can be used to adjust the range over
which the modulation is observed.

If one keeps the geometry fixed, and one compares the pattern
for constant illumination (i.e., infinite pulse length) with that
from a short pulse with the same irradiance, and if the ratio of
the modulated parts are compared, then:

I-1,-1,) pulse o 2 ' 2
MR = =1 Talputse exp| - -2 - exp| - AR (23)
(l-ll—lf!)cw Kwol _ 2CGI _

Then one can measure the pulse shape and pulse length simply from
the MR ratio.

Two special requirements give us a guide for choosing suitable
dimensions. First, a point on the screen with sufficient time
delays to sample the pulse width must have enough exposure to
record a signal. The slit width B should be as small as possible
to spread, or diffract, the beam in order to have sufficient
irradiance at that point. Second, for a given screen distance,
the sampled time delay would be larger, the larger the separation
between the slit. Of course, one would like to be close to the
slits in order to minimize differential air disturbances and to
increase the irradiance and, hence, the exposure on the screen.

A reascnable choice co.ld be made where the first minimum of the
diffraction pattern from one slit (0. = A/8) corresponds to a delay




of 3 7,. Thus 4T = 37, ~ (A/sin 6,;. The diffraction pattern should
be wider than the slit separation. The design of choice was B =
lm, » = 0.25 i, 6 = 0.25 radian for 4t = 5 ps and A = 1200 um.
Dimensions that are hard to fabricate, but not unreasonable.
Figures 2, 3, 4 and 5 show the recorded irradiance at the screen,
10 cm from the slits for illumination with 1, .5, .25, and .1 ps
FWHM pulses, respectively. Only one-half of the symmetric
central diffraction peak is shown. The first minima occurs at a
radius 2.5 cm. The secondary fringes have lower intensity and
less interest. The hatched regions in the figures are the region
of modulation in the incident irradiance. The fringe separation
at the screen is roughly AD/B ~ 20.8 um, corresponding to a 480
lpm grating. Thus these modulation are not resolvable on the
scale of the plot. The lower and upper limits of the hatched
regions are the limits of the modulation. The difference between
these two extremes is proportional to the modulating term I..

The dash dot central line is the incoherent sum 7/, + I, due to
irradiation from the two slits. The example configuration is
thus good at measuring pulses shorter than a ps. Three
alternatives exist to increase the range. One reduces the slit
width but with loss of signal. One can increase the slit
separation, with increase in the effect of spatial coherence.
Alternatively, one puts a delay in one of thLe paths, with a
possible increase in temporal incoherence due tc non-linear
dispersion in the delay optics.
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Figure 2. Irradiance as a function of axial
distance along the recording plane. The hashed
region represents the modulation due to
interference. The interference pattern is too
fine to resolve on the scale shown. The dashed
curve is the result for a noncoherent super
position. Each beamlet has a gaussian temporal
pulse with FWHM = 0.1 ps. Slit width 1 4,
separation 1200 u, * = 0.25 u.
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Figure 3. Irradiance as a function of axial
distance along the recording plane. The hashed
region represents “he modulation due to
interference. The interference pattern is too
fine to resolve on the scale shown. The dashed
curve 1is the result for a noncoherent super
position. Each beamlet has a gaussian temperal
pulse with FWHM = 0.2 ps. Slit width 1 4,
separation 1200 u, » = 0.25 u.
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Figure 4. Irradiance as a function of axial
distance along the recording plane. The hashed
region represents the modulation due to
interference. The interference pattern is too
fine to resolve on the scale shown. The dashed
curve 1is the result for a noncoherent super
position. Each beamlet has a gaussian temporal
pulse with FWHM = 0.5 ps. Slit width 1 g,
separation 1200 u, » = 0.25 u.
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Figure 5. Irradiance as a function of axial
distance along the recording plane. The hashed
region represents the modulation due to
interference. The interference pattern is too
fine to resolve on the scale shown. The dashed
curve 1is the result for a noncoherent super
position. Each bearmiet has a gaussian temporal
pulse with FWHM = 1.0 ps. Slit width 1 g,
separation 1200 u, * = 0.25 u.

4. SHEAR DESIGN

The shear design is based on a simple principle shown in
Figure 6. The incident collimated beam gets reflected from the
two surfaces of two optical flats. The two surfaces S; and S,
are separated by a vertex angle a. The rays reflected from the
two surfaces intersect at a point P. For collimated light, the
locus of point P is a plane that intersects the surfaces S, and
S> at their vertex. {For noncollimated light, the locus is a
cylindrical surface.)ll The locus plane makes an angle ¢ with
the front surface S;. Thus each point P on the plane corresponds
to interference between rays with an optical path difference
(OPD) :

4nn”z

6 =
A

tan a (21)

where n is the index of refraction of the material between the
surfaces, A is the wavelength in vacuum, and Z is the distance
from the vertex measured on the recording plane. The irradiance
distribution is thus similar to that for the two slit with the
replacement of the correct OPD in the formulas. Secondary
reflections have been neglected in the present analysis, but can
be included as in the case of a Fabry-Perot interferometer.l3



This condition is satisfied for reflectivities of few percent
from uncoated optics. The advantages of this arrangement are
many. First, the nonsensitivity of the fringe location on
incident angle. Second, each spatial part of the beam interfes :s
with itself, thus enabling spatially resolved pulse length
measurement. Third, tunability of the range by changing the
vertex angyle a. Fourth, linearity of the Z scale with time delay
or time difference. One disadvantage is the sensitivity, due to
dispersion, on the index of refraction of the material through
which the rays travel. This dispersion can be minimized by
evacuating the region between the surfaces, and by using thin
schlieren material. Another disadvantage is that the pattern is
sensitive to the optical quality of the beam. The beam's
wavefront differential distortion should be less than the beams
pulse length if nice fringes, equidistant and parallel to the
apex of the wedge, are to be observed. Any deviation will be a
reflection of optical phase distortion of the incident beam.

, RECORDING PLANE

Figure 6. Geometry used for a lateral shear instruments.

By equating the geometric path difference to the delay
4R = 2Z tan a = cAt/n the dispersion of the instrument is:

az ¢

als 2n fan a

(25)

For a design where n=1, and a dispersion of 1 cm/ps delay then a
= 15 mradian. The fringes will be separated by a distance
corresponding to the propagation of one wave, i.e., 6 = 6+2n
using

4
46 = (L—’i ;an—f)az (26)



then 4z = r/(2ntana) = 331/n, For n=1, » = 1/4 u, the fringe
period 47z - 8.33 u, corresponding to a 20 line per mm fringe
pattern.

2. READOUT

Two methods are proposed for the readout. For ultimate
resolution, each fringe should be resolved and the optical
density measured. A readout beam of diameter 1 um would easily
resolve the patterns and would give sub-femptosecond resolution.
For a resolution of .1 ps, a HeNe laser of roughly 1 mm readout
di’meter (Figure 7) would be used. The recording of the ratio of
the first order versus the zero order diffraction pattern
intensities would give a measure of the modulation amplitude.l4
A 1 mm diameter readout size would cover at least 100 grating
cycles, er.ough to define the diffraction grating efficiency.

READ OUT BEAM

SCAN DIRECTION RECORDING MEDIUM

Y

-1 ORDER g orp-R 1 ORDER

Figure 7. One proposed method for readout.

. EFFECT OF BANDWIDTH

The theory presented so far assumes that the incident
radiation is monochromatic. From the second part of this paper
we associated a spectral width with the pulse width. The
recorded pattern is a spectrally weighted integral over all
possible frequencies within the beam. The simplest estimate for
the effect of this integration can be derived from the
examination of the visibility of the fringes. The visibility of
the fringes will be impaired when the contribution of the mth
order from one side of the spectral distribution overlaps the m -«

1 th order contribution from the other side of the spectral

distribution:



Ym(A) = Yoo (A+41) (27)

For the two slit design, this gives m = (A + 41)/42., When 4r<x1
this occurs at Yu.x = mai/nd corresponding to a maximum time

delay 4Tus = ndR/c = A?/(c4r). Substituting Av = ¢, ¢4r = vidv then
ATuax = 174v which is a restatement of thne uncertainty principle
for measurement of complementary variables. For A = 1/4 um
radiation from a Kr¥ laser, » = 250 nm and 4» = 1 nm. The
maximum allowed order m is less than i/4r = 250. The visibility
degrades at Y x = 520 um. This corresponds to a delay of 1.7 ps,
sufficient to measure pulse lengths shorter than a ps. A check
on this method of estimating can be done hy applying it to the
case of a grating. When a flat grating is illuminated by a
monochromatic pulse of width W and pulse length 47, a finite
linear extension of the grating is covered at any time. The
illuminated length s = min (c47/sin6, W/cos8) where ¢ is the angle
between the normal to the grating and the direction of incidence.
The maximum number of grooves covered is thus M = s/b, where b is
the groove spacing. Assuming that the resolution equation for
constant illumination still applies, then the measured spectrum
has a resolution A/4A = mM, where m is the diffraction order.15
Utilizing the grating formula mi = bsing, and assuming that W is
large enough not to effect the results, then 41 = a*/c47, This
implies 4v 4T = | again. Thus using a flat grating is a
generalization of the two slit case, one can in principle measure
the pulse length from measuring the pulse bandwidth. This, of
course, applies only when the cohererce length is larger than the
pulse length.

2. SUMMARY

The present paper attempts to make two points. First to point
out that for short pulses the coherence time is not necessarily
shorter than the pulse width. Second, to present two
configurations that measure the pulse shape and hence the pulse
width. The two configurations rely on interference. The
principles, actual design, advantages and disadvantages of the
configurations were presented. The resolution and the
limitations of the two methods were discussed and stated.
Extensions to the multi-aperture case were also mentioned and
discussed.
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